Dirichlet Matrix Factorization: A Reliable Classification-Based Recommender System

نویسندگان

چکیده

Traditionally, recommender systems have been approached as regression models aiming to predict the score that a user would give particular item. In this work, we propose system tackles problem classification task instead of regression. The new model, Dirichlet Matrix Factorization (DirMF), provides not only prediction but also its reliability, hence achieving better balance between quality and quantity predictions (i.e., reducing error by limiting model’s coverage). experimental results conducted show proposed model outperforms other due ability discard unreliable predictions. Compared our previous which uses same approach, DirMF shows similar efficiency, outperforming former on some datasets included in setup.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

CGMF: Coupled Group-Based Matrix Factorization for Recommender System

With the advent of social influence, social recommender systems have become an active research topic for making recommendations based on the ratings of the users that have close social relations with the given user. The underlying assumption is that a user’s taste is similar to his/her friends’ in social networking. In fact, users enjoy different groups of items with different preferences. A us...

متن کامل

A Hybrid Approach to Recommender Systems based on Matrix Factorization

Due to the huge amount of information available online, the need of personalization and filtering systems is growing permanently. Recommendation systems constitute a specific type of information filtering technique that attempt to present items according to the interest expressed by a user. Commonly online recommender are employed for e-commerce applications or customer adapted websites. In gen...

متن کامل

AdaMF: Adaptive Boosting Matrix Factorization for Recommender System

Matrix Factorization (MF) is one of the most popular approaches for recommender systems. Existing MF-based recommendation approaches mainly focus on the prediction of the users’ ratings on unknown items. The performance is usually evaluated by the metric Root Mean Square Error (RMSE). However, achieving good performances in terms of RMSE does not guarantee a good performance in the top-N recomm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12031223